FORMULAE FOR NAVIGATION
1. PARALLEL SAILING
DEPARTURE = D’LONG X COS LAT D’ LONG
2. PLANE SAILING
DEPARTURE = D’LONG X COS M LAT DEP
MERCATOR SAILING DMP DIST
FIND COURSE & DISTANCE:
TAN CO = D’LONG /DMP D’LATDIST. = D’LAT / COS CO
FIND ARRIVAL POSITION:
D’LAT = DIST X COS COD’LONG = TAN CO X DMP
4. GREAT CIRCLE SAILING (TRIANGLE CALCULATE IN CLOCK WISE)
FIND DIST:
COS AB = COS PA X COS PB + SIN PA X SIN PB X COS PFIND INITIAL COURSE:
COS PB – COS AB X COS PACOS A = -----------------------------------
SIN AB X SIN PA
FIND FINAL COURSE:
COS PA – COS AB X COS PBCOS B = --------------------------------------
SIN AB X SIN PB
NAPIER’S RULES
SIN MIDDLE PART = PRODUCT OF COS OF OPPOSITE PARTSSIN MIDDLE PART = PRODUCT OF TAN OF ADJACENT PARTS
FOR QUADRANTAL SPHERICAL TRIANGLES I.E. ONE SIDE IS 90°, WHEN 3 PARTS ARE WRITTEN DOWN, THE TWO ADJACENTS OR TWO OPPOSITES ARE BOTH SIDES OR ANGLES, AN EXTRA MINUS SIGN MUST BE INTRODUCED.
SOME OF THE WORKED EXAMPLES
AZIMUTH PROBLEMS (STARS)
ON 25 SEPT 1996, DR 60°12’N, 092°29’E, SEXT ALT 25°03.8’, I.E.-3’ON, HE-20M, BODY BRG-265° (C), 266° (G), ARCTURAS (PM HRS), VAR-5°W, CT- 00h 40m 31s, CE-01m 01s FAST. FIND MAG. & GYRO ERROR & DEV.ANS;
CT = 25d 00h 40m 31s 25d 12h 40m 31s
CE = -01m 01s -01m 01s
CCT = 25d 00h 39m 30s OR 25d 12h 39m 30s
LIT (E )= 06h 09m 56s 06h 09m 56s
LMT = 25d 06h 49m 26s OR 25d 18h 49m 26s
AS TIME IS PM HRS, SO
CCT = 25d 12h 39m 30s
GHAγ 25d 12h = 184° 35’ SEXT ALT = 25° 03.8’
INCR 39m 30s = 9° 54.1’ I.E (ON) = -3’
GHAγ = 194° 29.1’ OBS. ALT = 25° 00.8’
SHA* = 146° 07.6’ DIP (20) = -7.9’
GHA* = 340° 36.7’ APP ALT = 24° 52.9’
LONG (E) = 092° 29’ T. CORR = -2.1’
LHA * = 073° 05.7’ T. ALT = 24° 50.8’
DECL = 19° 12.2’N
A= Tan LAT / Tan LHA = 0.53 S T. BRG = 265.3° T. BRG = 265.3°
B= Tan DEC / Sin LHA = 0.364 N C. BRG = 265° G. BRG = 266°
C= A-B = 0.166 S C. ERR = 0.3° E G. ERR = 0.7° (H)
AZ = Tan-1 {1 / (C x Cos LAT)} VAR = 5° W
= S 85.3° W = 265.3° (T) DEV = 5.3° E
AZIMUTH PROBLEMS (SUN)
ON. 23 FEB 1996, 41° 08’N, 171° 00’E, HE-20M, SEXT ALT (LL) 35° 17.5’, I.E. 1’ON, BODY BRG 155° (C), 154° (G), SUN (AM), VAR 2°E, CT 10h 09m 30s, CE-01m 12s SLOW. CTS 255° (T), WHAT IS GCTS? FIND MAG & GYRO ERROR & DEV.SOLUTION
CT = 23d 10h 09m 30s 23d 10h 09m 30s
CE = +01m 12s +01m 12s
CCT = 23d 10h 10m 42s OR 23d 22h 10m 42s
LIT (E )= 11h 24m 00s 11h 24m 00s
LMT = 23d 21h 34m 42s OR 24d 09h 34m 42s
BUT DATE IS ON 23RD, SO
CCT = 22d 22h 10m 42s
GHA SUN 22d 22h = 146° 36.7’ DECL = 10° 11.8’S
INCRE 10m 42s = 2° 40.5’ d’ CORR (0.9)= -0.2’
GHA 22d 22h 10m 42s= 149° 17.2’ DECL = 10° 11.6’S
LONG (E) = 171° 00’
LHA = 320° 17.2’
A= Tan LAT / Tan LHA = 1.05’ S SEXT ALT = 35° 17.5’
B= Tan DEC / Sin LHA = 0.28’ S IE (ON) = -1’
C= A+B = 1.33’ S OBS ALT = 35° 16.5’
AZ = Tan-1 {1 / (C x Cos LAT)} DIP (20) = -7.9’
= S 44.9° E = 135.1° T APP ALT = 35° 08.6’
T. BRG = 135.1° T. CORR = +14.9’
C. BRG = 155° T. ALT = 35° 23.5’
C. ERR = 19.9° W
VAR = 2° E DEV = 21.9° W G. ERR = 18.9° H GCTS = 273.9°
AZIMUTH PROBLEMS (PLANET)
ON 25 MAY 1996, 12° 00’ S, 032° 00’ E, BRG - 225° (C), 220° (G). JUPITER (AM). VAR-4°W. CT- 02h 52m 08s. C.E.- NIL. TCTS - 034°, WHAT IS GCTS?
GMT = 25d 02h 52m 08s OR 25d 14h 52m 08s
LIT (E)= 02h 08m 00s 02h 08m 00s
LMT = 25d 05h 00m 08s 25d 17h 00m 08s
AS TIME IS AM SO
GMT = 25d 02h 52m 08s
GHA 25d 02h = 344° 30.4’ DECL = 22° 19.7’S
INCRE 52m 08s = 13° 02’ d’ CORR (0.0) = 0.0’
v’ CORR (2.6) = 02.3’ DECL = 22° 19.7’ S
GHA = 357° 34.7’
LONG (E) = 032° 00.0’
LHA = 29° 34.7’
A= Tan LAT / Tan LHA = 0.374’ N
B= Tan DEC / Sin LHA = 0.832’ S = S 65.9° W = 245.9° T
C = A – B = 0.458’ S
AZ = Tan-1 {1 / (C x Cos LAT)}
T. BRG = 245.9° T.BRG = 245.9° TCTS = 034°
C. BRG = 225° G. BRG = 220° GCTS = 008.1°
C. ERR = 20.9° E G. ERR = 25.9° L
VAR = 4° W DEV = 24.9°E
NOTE
1. C = A ± B (SAME NAME +)2. AZ NAMED AS N/S ACCORDING TO “C” & “E” IF LHA IS EQUAL / MORE THAN 180° & VISE VERSA.3. A NAMED AS, IF LHA IS 090°~270°, SAME AS LAT, OR ELSE OPPOSITE, B NAMED AS DECL.
AMPLITUDE PROBLEMS
FIND MAG. & GYRO ERROR & MAG. DEV.
ON 20 NOV 1996, DR. POSITION 23o 30’ N, 100o 00’ W, SUN BRG 100.5o (C), 111o (G), AM AMPLITUDE, VAR-20o W ?LMT SUNRISE 20o N = 06h 13m
LAT CORR 3o30’ = +00h 05m
LMT SUNRISE @ 23o30’N = 06h 18m FOR 21ST
LMT SUNRISE @ 23o30’N = 06h 16m FOR 18TH
TRI-DAILY CORR. = 02m DECL 20d 12h=19o 48.8’ S
DAILY CORR . = 0.67m d’ CORR. (0.5)= +0.5
LMT SUNRISE ON 20TH = 06h 17m 20s DECL = 19o 49.3’ S
LIT (w) = 06h 40m 00
GMT SUNRISE ON 20TH =12h 57m 20s
Sin AMPL = Sin DEC x Sec LAT
Sin ampl = Sin 19o 49.3’ x Sec 23o 30’
AMPL = E 21.7o S = 111.7o (T)
SUN BRG = 100.5o (C) MAG ERROR = 11.2o (E) DEV = 31.2o E
SUN BRG = 111o (G) GYRO ERROR = 0.7o L
ON. 26 APR 1996, DR POSITION 36o 30’ N, 002o 10’ W, SUN BRG 080o (C), 072o (G), AM AMPL, VAR-10o W. IF C.T.S. 162o (T), WHAT IS GYRO C.T.S.?
LMT SUNRISE 25d 35o N = 05h 16m
LMT SUNRISE 28d 35o N = 05h 12m
TRI-DAILY CORR . = 04m DECL 26d 05h=13o 36.1’ N
DAILY CORR. = 1.30m d’ CORR.(0.8) = +0.3
LMT SUNRISE ON 26TH35o = 05h 14m 40s DECL = 13o 36.4’ N
LAT CORR. 1o 30’ = -3m
LMT SUNRISE @ 36o30’N = 05h 11m 40s FOR 26TH
LIT (w) = 00h 08m 40s
GMT SUNRISE ON 26TH =05h 20m 20s
Sin AMPL = Sin DEC x Sec LAT = Sin 13o 36.4’ x Sec 36o 30’
AMPL = E 17.0o N = 073.0o (T)
T. BRG. = 073o BRG. = 080o C.ERR. = 7o (w) VAR =10o W
DEV = 3o E
T. BRG = 073o G. BRG = 072o G. ERR = 1o (L) G.C.T.S.=161o (G)
NOTE: AMPL NAMED AS SUNSET (W), SUNRISE (E) & N/S ACCORDING TO DECL
PARALLEL SAILING EXERCISES
1. A ship sailed due west along the equator for 18 hours at 16 knots. Find her final position if her departure position was in longitude 10° 30’W.2. How many miles must a vessel travel along the parallel of latitude 56° South in order to change her longitude 10°.
3. Two vessels are 50 miles apart in latitude 35°N. They both travel due south until they are 55 miles apart. What is their present latitude and how far has each vessel traveled?
4. At what speed is a point in latitude 60° carried around the earth’s axis?
5. A vessel in latitude 36° 18’N, steams 090°T for 100 miles. She then steams 180° T for 11 hours, 270° for 100 miles and 000° for 11 hours. If the vessel is then 4 miles to the east of her starting position, find her speed if it has been constant throughout.
ANSWERS:
1. Lat 0°, long 15° 18’W
2. 335.5 miles
3. Lat 25° 42’N, 558 miles
4. 450 knots
5. 18.48 knots
DEPARTURE, D’LONG, D’LAT
37° 30’ N 150° 12’W 089° 36’E
29° 48’N 140° 48’E 086° 12’ W
07° 42’ S 069° 00 W 175° 48’ W
PARALLEL SAILING
1. 23° N, 048° 42’E, STEAMS EAST 1000 MILESDEP = D’LONG x COS LAT
D’LONG = 018° 06.35’ E
FINAL POSITION = 23° N, 066° 48.35’E
2. 36° N, 009° 12’E, STEAMS WEST 1833 MILES
D’ LONG = 37.76°W LONG = 28° 33.7’WPLANE SAILING
1. 10° 30’N, 056° 48’E. COURSE 060°T, DIST – 120’. FINAL POSITION?Sin CO = Dep / Dist
Dep = 103.9’
Tan CO = Dep / D’lat
D’lat = 179.96’ = 02° 59.9’N
Final Lat = 13° 29.9’N
Dep = D’long x Cos m’lat
D’long = 105.22’ = 001° 45.8’ E
Final Long = 058° 33.8’E
GREAT CIRCLE SAILING PROBLEMS
A 35° 03’S, 056° 17’W TO B 34° 30’S 017° 20’E
Cos AB = Cos PA x Cos PB + Sin PA x Sin PB x Cos P A 35° 03’S B 34° 30’S
AB = 3537.8 = Great Circle Dist.
Cos PB – Cos AB x Cos PA
Cos A = ----------------------------------- 54.95° 55.5°
Sin AB x Sin PA
Angle A = S 67.3° E = 112.7° = Initial Course
Cos PA – Cos AB x Cos PB
Cos B = -----------------------------------
Sin AB x Sin PB
Angle B = N 66.4° E = 066.4° = Final Course
GREAT CIRCLE SAILING EXERCISES
Find the initial, final courses and distance along the great circle track from position A to B:1. A: 35° 03’S, 056° 17’W to B: 34° 30’S, 017° 20’E
2. A: 38° 03’N, 122° 17’W to B: 41° 30’N, 141° 13’E
3. A: 20° 52’S, 057° 37’E to B: 32° 12’S, 115° 09’E
4. A: 25° 41’N, 072° 10’W to B: 33° 07’N, 017° 15’W
5. A: 38° 55’N , 140° 45’W to B: 51° 40’N, 170° 00’E
6. A: 45° 47’S, 170° 45’E to B: 12° 04’S, 077° 14’W
7. A: 28° 56’N, 162° 46’E to B: 47° 36’N, 158° 10’W
8. Calculate the shortest distance and initial and final course, A: 48° 20’ N Departure – 2667’
9. Find (i) the positions of the vertex
(ii) the courses at each vertex
(iii) the distance to the north vertex
A vessel at Equator 100° W makes a great circle track with an initial course N 035° EAnswers:
1. Initial Course – S 067.3° E, Final Course – N 066.4° E Distance – 3537.8’
2. Initial Course – N 052.4°W, Final Course – S 056.4° W Distance – 4201.4’
3. Initial Course – S 064.8° E, Final Course – N 087.5° E Distance – 3126.1’
4. Initial Course – N 067.5° E , Final Course – S 083.8° E Distance – 2873.1’
5. Initial Course – N 052.9° W, Final Course – S 089.1° W Distance – 2167.3’
6. Initial Course – S 065.7° E, Final Course – N 040.6° E Distance – 5764.5’
7. Initial Course – N 047.2° E, Final Course – N 072.3° E Distance – 2122.1’
8. Initial Course – N 063.7° E, Final Course – S 063.7° E Distance – 2578.2’
9. (i) 55° N, 010° W and 55°S, 170°E (ii) East for both cases (iii) 5400 miles
COMPOSITE GREAT CIRCLE SAILING PROBLEMS
ON. A 37° 48’ N 122° 40’W, B 35° 40’ N 141° 00’E, LIMITING LAT 45° NAs per Napier’s Rule from Spherical Triangle PAV1,
Sin PV1 = Cos Comp A x Cos Comp PA
= Sin A x Sin PA
Angle A = N 063.5° W = Initial Co
Sin Comp PA = Cos AV1 x Cos PV1
Cos PA = Cos AV1 x Cos PV1
AV1 = 29.91° = 1794.79’ = Great Circle Dist.
Cos P = Tan PV1 x Cot PA
P = 39.13°
Spherical Triangle PBV2,
Cos P = Tan PV2 x Cot PB
P = 44.13°
Cos PB = Cos PV2 x Cos BV2
BV2 = 2067.22’ = Great circle dist
Sin PV2 = Sin PB x Sin B
B = S 060.5° W = Final Course
Triangle PV1V2
P = 83° 40’ – (39.13° + 44.13°) = 13.07°
Dep = D’long x Cos LAT
Dep = 554.51’ = Rhumb Line Dist
COMPOSITE GREAT CIRCLE EXERCISES
1. The master instructed you to plan a great circle route from A to B:Position A: Lat 37° 48’ N Long 122° 40’ W
Position B: Lat 35° 40’ N Long 141° 00’ E
Advice the master the initial and final courses and distance along the composite great circle track. The company has a policy of not allowing vessels in the fleet to proceed beyond 45° N latitude.
2. Find the distance and the initial course for a composite great-circle route from position A (10° 18’S, 020° 10’E) to position B (45° 00’S, 160° 10’E). The limiting latitude is 45°S.
3. What is the total distance and the initial course for a composite great-circle route from Lat 34° 55’ S Long 056° 10’ W to Lat 33° 55’ S Long 018° 25’ E, given that the limiting latitude is 38°S.
4. Calculate the shortest distance from 4° 00’ N 031° 00’ E to 42° 00’ S 145° 00’E. The trading warranty stipulated that the vessel should not proceed further south than 42° S. What is the vessel’s course when she crosses the equator.
5. A: 25° 08’N 121° 41’E to B: 37° 48’N 122° 27’W, Limiting latitude - 38°N
6. A: 22° 38’S 157° 32’E to B: 47° 50’S 133° 10’W, Limiting Latitude - 47° 50’S
Answers:
1. Initial Co = N 63.5° W = 296.5° TFinal Co = S 60.5° W = 240.5° T
Total Dist = 2067.22’ + 554.3’ + 1794.8’ = 4416.3 miles
Long V1 = 162° 47.999’ W Long V2 = 175° 51.851’ W
2. Initial Co = S 45° 56.8’ E = 134° T
Total Dist = 4521.2’ + 2565.6’ = 7086.8’
3. Initial Co = S 73° 56.6’ E = 106° T
Total Dist = 1296.6’ + 816.8’ + 1500’ = 3613.4’
4. Total Dist = 5759’ + 871.6’ = 6630.6’
Co at Eq = S 48° E = 132° T
5. Initial Co = N 060.5° E
Final Co = S 085.8° E
Total Distance = 2782.8’ + 2643.1’ + 325.3’ = 5751.2’
Long V1 = 175° 46.8’ E Long V2 = 129° 19.1’ W
6. Initial Co = S 46.7° E
Final Co = 090.0° E
Total Distance = 3523.3’ + 60.8’ + 0’ = 3584.1’
Long V1 = 135° 39.2’ W Long V2 = 133° 10.0’ W
INTERCEPT METHOD
FIND P/L & POSITION THROUGH WHICH IT PASSES.
PM HRS, 26 JUL 1996, DR POSITION 48° 45’ N, 018° 10.0 ‘ W. SEXT ALT (LL) 28° 20.0’, I.E. 1.0’ ON, H.E. 6.1 M, CT 05h 54m 00s, CE 01m 11s FAST.
CT = 26d 05h 54m 00s 26d 17h 54m 00s
CE = - 01m 11s - 01m 11s
CCT= 26d 05h 52m 49s OR 26d 17h 52m 49s
LIT (W)= - 01h 12m 40s 01h 12m 40s
LMT = 26d 04h 40m 09s 26d 16h 40m 09s
AS SIGHT TAKEN IN PM HRS, SO
GMT = 26d 17h 52m 49s
GHA 26d 17h = 073° 22.6’ DECL = 19° 15.7’N
INCRE 52m 49s = 13° 12.3’ d’ CORR (0.5) = - 0.5’
GHA = 086° 34.9’ DECL = 19° 15.2’N
LONG (W) = 018° 10.0’
LHA = 068° 24.9’
Cos CZD = Cos LHA x Cos LAT x Cos DEC ± Sin LAT x Sin DEC
(DEC & LAT SAME NAME +)
SEXT ALT = 28° 20.0’
I.E. (ON) = -1.0’
OBS ALT = 28° 19.0’
DIP (6.1M) = -4.3’
APP ALT = 28° 14.7’
T. CORR. = + 14.2’
T. ALT = 28° 28.9’
TZD = 61° 31.1’
CZD = 61° 30.97’
INTERCEPT = 0.13’ (AWAY)
A = 0.451’S AZ = 267.2° (T)
B = 0.376’N P/L = 177.2° ~ 357.2° (T)
C = 0.075’S ITP POSITION FROM DIAGRAM = 48° 45’N, 018° 09.8’ W
NOTE: INTERCEPT AWAY / TOWARDS IS ‘TST’ FORMULAE, “TRUE SMALLER TOWARDS”
SAME EXERCISE IN LONG BY CHRON METHOD
OBTAIN FROM ABOVE EXCERSISE
GMT = 26d 17h 52m 49s GHA = 86° 34.9’ DECL = 19° 15.2’ N
T. ALT = 28° 28.9’
Sin T.ALT ± Sin LAT x Sin DEC
Cos P = -----------------------------------------
CosLATxCosDEC
P = 68° 25.1’ LHA = 68° 25.1’
GHA = 86° 34.9’ OBS LONG = 018° 09.8’ W 48°45’N
DR LAT = 48° 45’N LONG = 018° 09.8’W
AZ 267.2°
NOTE: DECL & LAT SAME NAME (-)
ON 21 JAN 1996, MORNING TWILIGHT, DR 12° 30’ N, 106° 14’E, JUPITER. SEXT ALT 17° 24’, I.E 1.3’OFF. HE 14.2’ M. CT 10h 49m 09s, CE-05m 01s SLOW.CT =21d 10h 49m 09s 21d 22h 49m 09s
CE = + 05m 01s + 05m 01s
CCT= 21d 10h 54m 10s OR 21d 22h 54m 10s
LIT (E)= + 07h 04m 56s 07h 04m 56s
LMT = 21d 17h 59m 06s 22d 05h 59m 06s
AS SIGHT TAKEN IN MORNING ON 21ST, SO
GMT = 20d 22h 54m 10s
GHA 20d 22h = 175° 19.1’ DECL = 23° 09.6’S
INCRE 54m 10s = 13° 32.5’
v’ CORR (1.9) = 1.7’
GHA = 188° 53.3’
LONG (E) = 106° 14.0’
LHA = 295° 07.3’
Cos CZD = Cos LHA x Cos LAT x Cos DEC ± Sin LAT x Sin DEC
(DEC & LAT SAME NAME +)
CZD = 72° 47.1’
SEXT ALT = 17° 24.0’
I.E. (OFF) = + 1.3’
OBS ALT = 17° 25.3’
DIP (14.2M) = -6.6’
APP ALT = 17° 18.7’
T. CORR . = - 03.1’
T. ALT = 17° 15.6’
TZD = 72° 44.4’
CZD = 72° 47.1’
INTERCEPT = 2.7’ (TOWARDS)
A = 0.104’S AZ = S 60.6 E = 119.4° (T)
B = 0.472’S P/L = 029.4° ~ 209.4° (T)
C = 0.576’S
MERIDIAN PASSAGE (SUN)
ON 20 MAR 1996, 25° 22’N, 116° 37’W, SEXT MER. ALT – 64° 45’ (LL), I.E.-1.5’ ON, HE- 17.9 M. FIND LAT & DIR OF P/L. WHAT IS THE BRG OF BODY AT M.P.?PRINCIPAL METHOD : PRACTICAL METHOD:
GHA = LONG = 116°37’ LMT MER PASS = 20d 12h 07m
GHA 103°10.2’ = 20d 19h LIT (W) = 07h 46m 28s
INCRE. 13°26.8’ = 53m 47s GMT MER PASS = 20d 19h 53m 28s
GHA 116°37’ GMT = 20d 19h 53m 47s DECL 20d 19h = 00° 10.8N
LIT (W) = 07h 46m 28s d’ CORR (1.0) = +0.9
LMT = 20d 12h 07m 19s DECL = 00° 11.7N
SEXT M. ALT = 64° 45’
I.E. (ON) = +1.5’
OBS ALT = 64° 43.5’
DIP (17.9) = -7.4’
APP ALT = 64° 36.1’
T. CORR. = +15.8’
T. ALT = 64° 51.9’
TZD (-90°) = 25° 08.1’
DECL = 00° 11.7’ N
LAT = 25° 19.8’ N
P/L = 090° ~ 270°
BRG = 180° (T)
ON 18 APR 1996, 00° 00.5’ S, 160° 58’ E, I.E.-1’OFF, HE-17.4 M. FIND SETTING ON SEXT ALT (LL). FOR SUN’S M.P. WHAT IS AZ OF SUN AT M.P. FIND SMT OF ZONE 11 & P/L AT MP.
PRINCIPAL METHOD: PRACTICAL METHOD:
GHA = 360°-160° 58’ = 199° 02’ LMT MER PASS = 18d 11h 59m
GHA 195°09.4’ = 18d 01h LIT (E) = 10h 43m 52s
INCRE. 03°52.6’ = 15m 30s GMT MER PASS = 18d 15h 08m 18s
GHA 199°02’ GMT = 18d 01h 15m 30s DECL 18d 01h = 10° 51.8N
LIT (E) = 10h 43m 52s d’ CORR (0.9) = +0.2
LMT = 18d 11h 59m 22s DECL = 10° 52.0N
DECL = 10° 52.0’
DR. LAT = 00° 00.5’ S
Z.D. = 10° 52.5’
T. ALT = 79° 07.5’
T. CORR = -15.7’
APP. ALT = 78° 51.8’
DIP(17.4) = +7.3’ decl
OBS ALT = 78° 59.1’
I.E. (OFF) = - 1’
SEXT ALT = 78° 58.1’
P/L = 090° ~ 270° AZ. = 000° (T)
SMT OF M.P.= 18d 12h 15m 30s
NOTE: FOR PRINCIPAL METHOD, IF LONG ‘W’, THEN GHA = LONG, OR ELSE,
GHA = 360-LONG
MERIDIAN PASSAGE (STAR)
ON. 4 MAR 1996, 45°10’ N, 120° 30’ W. SEXT MER ALT - 18° 26.2’ (ANTARES). I.E. 3.2’ OFF, H.E-10M, FIND LAT & P/L.MP γ GMT = 05d 13h 05.8m SEXT ALT = 18° 26.2’
MP γ GMT = 02d 13h 17.6m I.E. = +3.2’
TRI DAILY DIFF = 11.8m OBS M. ALT = 18° 29.4’
DAILY DIFF = 3.9m DIP (10) = -5.6’
MP γ GMT = 04d 13h 09.7m APP ALT = 18° 23.8’
R.A. = 360° – SHA* T. CORR = -2.9’
= 247° 17.8’ T. ALT = 18° 20.9’
R.A.I.T. = 16h 26m 33s TZD = 71° 39.1’
LMT MP γ = GMT MP γ + R.A.I.T DECL = 26° 25.3’ S
= 05d 05h 36m 15s LAT = 45° 13.7’ N
1 Sidereal Day = - 23h 56m 04s P/L = 090° ~ 270°
LMT MP γ = 04d 05h 40m 11s
(AS DAY IS 4TH)
NOTE: AS 1 SIDEREAL SAY = 23h 56m 04s, SO R.A.I.T. WILL BE (R.A./ 15° 02’ 27.9’’)
& LMT MP γ = GMT MP γ +RAIT IS SAME AS LMT = GMT ± LONG.
MERIDIAN PASSAGE (PLANET)
4. 9 OCT 1996, 14° 22’ N, 179° 39’ W. SATURN. I.E.-2’ ON, H.E.-28M. FIND SEXT ALT, AZ & P/L.LMT MP OF SATURN = 10d 22h 55m DECL = 01° 14.3’S
LMT MP OF SATURN = 07d 23h 08m d’CORR = +0.1’
TR-DAILY DIFF = 13m DECL = 01° 14.4’S
DAILY DIFF = 4.3m
LMT MP = 09d 22h 59.3m
LIT (W) = 11h 58.6m
GMT MP = 10d 10h 57.9m
DECL = 01° 14.4’S
LAT = 14° 22’N
ZD = 15° 36.4’
T.ALT = 74° 23.6’
T. CORR = +0.3’
APP ALT = 74° 23.9’
DIP (28) = +9.3’
OBS. ALT = 74° 33.2’
I.E. (ON) = +2’
SEXT ALT = 74° 35.2’
AZ = 180° (T)
P/L = 090° ~ 270°
POLARIS PROBLEMS
ON 01 May 1996, (Morning Twilight). DR 51° 03’ N, 150° 00’ E, Sext Alt - 50° 46.8’. I.E. – Nil, H.E.- 14 M. CT 05h 30m 30s, CE – Nil. Mag comp brg - 005° (C), Var - 1° E, G. BRG- 001° (G).CCT = 01d 05h 30m 30s OR 01d 17h 30m 30s
LIT (E)= 10m 10s 10m 10s
LMT = 01d 15h 30m 30s 02d 03h 30m 30s
AS MORNING TWILIGHT SO
CCT = 30d 17h 30m 30s FOR LMT 01d 03h 30m 30s
GHA γ 30d 17h = 113° 54.8’
INCRE 30m 30s = 007° 38.8’
GHA γ 30d 17h 30m 30s = 121° 33.6’
LONG (E) = 150° 00.0’
LHA γ = 271° 33.6’
SEXT ALT = 50° 46.8’ T. BRG = 001°
I.E. = 00.0’ G. BRG = 001°
OBS ALT = 50° 46.8’ G. ERR = NIL
DIP (14m) = -6.6’
APP ALT = 50° 40.2’ C. BRG = 005°
T. CORR = -0.8’ T. BRG = 001°
T. ALT = 50° 39.4’ C. ERR = 004° W
ao = 1° 25.3’ VAR = 1° E
a1 = 0.6’ DEV = 5° W
a2 = 0.4’
= 52° 05.7’
-1°
LAT = 51° 05.7’ N
AZ = 001° T
P/L = 091° ~ 271° T
NOTE: IF LAT IS NOT KNOWN, TAKE T. ALT AS LAT.
ON 04 SEP 1996, DR LAT NOT KNOWN, 171° 00’ E, SEXT ALT 48° 40’, I.E. 2’ OFF, HE- 12M. CT – 05h 11m 45s, CE – 03m 00s SLOW. C. BRG - 003°, VAR - 5°W, G. BRG - 359° (MORNING TWILIGHT).
CT = 04d 05h 11m 45s
CE = + 03m 00s
CCT = 04d 05h 14m 45s OR 04d 17h 14m 45s
LIT (E)= 11h 24m 00s 11h 24m 00s
LMT = 04d 16h 38m 45s 05d 04h 38m 45s
AS MORNING TWILIGHT SO
CCT = 03d 17h 14m 45s FOR LMT 05d 04h 38m 45s
GHA γ 03d 17h = 238° 06.3’
INCRE 14m 45s = 003° 41.9’
GHA γ 03d 17h 14m 45s= 241° 48.2’
LONG (E) = 171° 00.0’
LHA γ = 052° 48.2’
SEXT ALT = 48° 40.0’ T. BRG = 359.6°
I.E. = + 02.0’ G. BRG = 359°
OBS ALT = 48° 42.0’ G. ERR = 0.6 L
DIP (12m) = -6.1’
APP ALT = 48° 35.9’ C. BRG = 003°
T. CORR = -0.9’ T. BRG = 359.6°
T. ALT = 48° 35.0’ (TAKEN AS LAT) C. ERR = 3.4° W
ao = 0° 15.3’ VAR = 5° W
a1 = 0.6’ DEV = 1.6° E
a2 = 0.3’
= 48° 51.2’
-1°
LAT = 47° 51.2’ N
AZ = 359.6° T
P/L = 089.6° ~ 269.6° T
ON 21 MAR 1996 (EVENING), DR 105° 28’ W, SEXT ALT 58° 40’, IE – 3’ ON, HE 13M, CT – 01h 29m 18s, CE – 02m 30s SLOW. C. BRG - 355°, VAR - 5°W, G. BRG - 002°.
CT = 21d 01h 29m 18s 21d 01h 29m 18s
CE = + 02m 30s + 02m 30s
CCT = 21d 01h 31m 48s OR 21d 13h 31m 48s
LIT (W)= 07h 01m 52s 07h 01m 52s
LMT = 20d 18h 29m 56s 21d 06h 29m 56s
AS EVENING TWILIGHT SO
CCT = 22d 01h 31m 48s FOR LMT 20d 18h 29m 56s
GHA γ 22d 01h = 194° 49.0’
INCRE 31m 48s = 007° 58.3’
GHA γ 22d 01h 31m 48s = 202° 47.3’
LONG (W) = 105° 28.0’
LHA γ = 097° 19.3’
SEXT ALT = 58° 40.0’ T. BRG = 358.7°
I.E. = - 03.0’ G. BRG = 002°
OBS ALT = 58° 37.0’ G. ERR = 3.3 H
DIP (13m) = -6.3’
APP ALT = 58° 30.7’ C. BRG = 355°
T. CORR = -0.6’ T. BRG = 358.7°
T. ALT = 58° 30.1’ (TAKEN AS LAT) C. ERR = 3.7° E
ao = 0° 36.6’ VAR = 5° W
a1 = 0.7’ DEV = 8.7° E
a2 = 0.9’
= 59° 08.3’
-1°
LAT = 58° 08.3’ N
AZ = 358.7° T
P/L = 088.7° ~ 258.7° T
STAGGERED OBSERVATION
1. From the following sights find the position of the ship at the time of the second observation:Time 1500 hrs, EP 19° 10’ N, 065° 00’ E, intercept 3.4’ Away, Azimuth 286° T
Run 88 miles, course 220° T
Time 1700 hrs, EP 18° 00’ N 064° 00’E intercept 2.0’ Towards, Azimuth 144° T
2. From the following sights find the position of the ship at the time of the second observation:
Time 1430 hrs, DR 43° 13’ N, 150° 46’ E, intercept 1.6’ Towards, Azimuth 217° T
Run 60 miles, course 290° T
Time 1800 hrs, Using DR run up, intercept 5.0’ Away, Azimuth 144° T
3. From the following sights find the position of the ship at the time of the second observation:
Time 0615 hrs, DR 20° 13’ N, 179° 30’ E, intercept 5.3’ Towards, Azimuth 058° T
Run 84 miles, course 245° T
Time 1210 hrs, Obs Lat 19° 36.1’N
4. From the following sights find the position of the ship at the time of the second observation:
Time 1500 hrs, DR 27° 15’ S, 179° 50’ W, obs long 179° 53.1’W, Azimuth 275° T
Run 47 miles, course 227° T
Time 1830 hrs, Using DR latitude and obs long run up, intercept 4.9’, Azimuth 053° T
5. From the following sights find the position of the ship at the time of the second observation:
Time 0830 hrs, DR 21° 13’ S, 179° 38’ W, intercept 3.3’ Away, Azimuth 082° T
Run 56 miles, course 252° T
Time 1153 hrs, Using DR run up an ex-meridian sight gave a lat 21° 23’ S, Azimuth 178°T
6. From the following sights find the position of the ship at the time of the second observation:
Time 0700 hrs, EP 30° 54’ N, 050° 26’ W, obs long 50° 35.5’W, Azimuth 114° T
Run 87.5 miles, course 258° T, Current 095°T, drift 4.2 miles.
Time 1150 hrs, Obs Lat 30° 40.5’N
7. From the following sights find the position of the ship at the time of the second observation:
Time 1300 hrs, DR 19° 20’ N, 061° 00’ E, intercept 4.2’ Away, Azimuth 280° T
Run 85 miles, course 215° T
Time 1900 hrs, DR 18° 00’ N 060° 00’E intercept 2.8’ Towards, Azimuth 144° T
ANSWERS:
1. POSITION 17° 59.5’N, 064° 03.5’E
2. POSITION 43° 35.1’N, 149° 22.1’E
3. POSITION 19° 36.1’N, 179° 16.7’E
4. POSITION 27° 39.8’S, 179° 28.9’E
5. POSITION 21° 23.2’S, 179° 20.3’E
6. POSITION 30° 40.5’N, 052° 07.4’W
7. POSITION 18° 05.1’N, 060° 12.1’E
No comments:
Post a Comment